The oculomotor neural integrator uses a behavior-related coordinate system.
نویسنده
چکیده
Coordinate systems are a central issue in computational neuroscience: are they explicitly represented at some reductive level of brain function, and if so, are they only trivial products of associated anatomic geometries? This investigation examined these questions in the neural network that holds eye position, the so-called oculomotor integrator. Since neural activity in the integrator is behaviorally constrained by Listing's law to encode horizontal and vertical eye positions within Listing's plane and zero rotation about the orthogonal torsional axis, it was hypothesized that any integrator coordinate system would be developmentally predisposed to align with Listing's plane. A test for this hypothesis was developed with the use of a kinematically correct model of the three-dimensional saccade generator. Three mathematical integrators were used to represent the neuron populations that control torsional, vertical, and horizontal eye position. Simulated failure of the torsional and vertical integrators produced eye position drift that was parallel to the horizontal plane containing the intrinsic coordinate axes for these components. Furthermore, this drift settled toward a resting range parallel to the intrinsic vertical coordinate axis (for horizontal rotation). To experimentally identify these intrinsic population coordinates, three-dimensional eye positions were measured in four Macaca fascicularis after injection of muscimol into the mesencephalic interstitial nucleus of Cajal (INC), a technique that disrupts the torsional and vertical integrators (Crawford et al., 1991). INC inactivation produced exponential, position-dependent decay in vertical and torsional eye position. There was no position-dependent horizontal drift, but in the original coordinate system (defined arbitrarily by the measurement apparatus) there was a constant-direction horizontal drift. However, this extraneous horizontal drift was eliminated when the data were transformed into a coordinate system that aligned with Listing's plane. The direction of torsional drift correlated well (r = 0.85), across all experiments, with the normal to Listing's plane. On average, these two directions were only 0.06 degrees from perfect alignment. In contrast, drift direction did not correlate with stereotaxic coordinates (r = 0.10). Furthermore, the drift settled toward a range parallel to and correlated with Listing's plane (r = 0.94), whereas this range did not correlate well with stereotaxic coordinates (r = 0.02). On average, the resting range was aligned within 0.98 degrees of Listing's plane. Finally, this resting range was near orthogonal (average 91.9 degrees across all experiments) to the direction of torsional drift. These results show that integrator cell populations use an orthogonal, craniotopic coordinate system that aligns with Listing's plane.(ABSTRACT TRUNCATED AT 250 WORDS)
منابع مشابه
Plasticity and tuning of the time course of analog persistent firing in a neural integrator.
In a companion paper, we reported that the goldfish oculomotor neural integrator could be trained to instability or leak by rotating the visual surround with a velocity proportional to +/- horizontal eye position, respectively. Here we analyze changes in the firing rate behavior of neurons in area I in the caudal brainstem, a central component of the oculomotor neural integrator. Persistent fir...
متن کاملLinear Network Models of the Oculomotor Integrators
The oculomotor system uses integrators to transform velocity signals to control eye position. We model such an integrator as a linear network with a marginal mode separated from stable modes by a large spectral gap. The model neurons carry a superposition of position and velocity signals, just as observed in single unit recordings from hindbrain oculomotor areas. The single unit properties of t...
متن کاملA model of visual–spatial memory across saccades
This paper describes a neural network model that directs saccades back to targets after they disappear and other saccades intervene. This is a simple example of knowing where something is after it is no longer visible and the observer has moved. These tasks require a short-term memory that can store continuous values of spatial location. The model was generated by training a neural network with...
متن کاملDesign Servo System Type and Positioning of Pole Observer Full Rank a Piezoelectric Servo Valve without Integrator
In this paper, the method of modern control approach for the design of controller and observer is used. Other functions such as neural controllers - or fuzzy sliding mode control can be found in this work and the results are compared. First, a dynamic model of the servo valve is intended for the governing equations in state-space form expression are obtained. Due to the system integrator is exp...
متن کاملPlasticity and tuning by visual feedback of the stability of a neural integrator.
Persistent neural firing is of fundamental importance to working memory and other brain functions because it allows information to be held "online" following an input and to be integrated over time. Many models of persistent activity rely on some kind of positive feedback internal to the neural circuit concerned; however, too much feedback causes runaway firing (instability), and too little res...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 14 11 Pt 2 شماره
صفحات -
تاریخ انتشار 1994